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Part I. Project Summary

This report summarizes the work performed under DOD SBIR contract # DAAL06-92-C-
0006, to develop of a computational algorithm for modeling the acoustic scattering from
a turbulence distribution, which is modeled as a collection of discrete turbules with a
discrete turbule size spectrum. The methods adopted here build on the prior structure
function analysis of Tatarskil, and incorporate this approach into a mean field method for
characterizing coherent and incoherent multiple scattering from a turbulence volume.
The mean field treatment is an extension to the acoustic case of prior work in
electromagnetic scattering from turbulence by one of the authors (Dr. Resendes).23 The
object of the current effort is to produce a phase I code module which is very general, and
which can, under phase II and beyond, be adapted to, and incorporated in, the Army's
broader acoustic modeling program, with particular application to the issue of scattering '
into shadow zones. This phase I SBIR project was completed on November 18, 1992.

Part II of this report addresses the structure function approach and its relationship to the
computation of an appropriate eddy number density distribution as a function of eddy size
parameter. The work discussed here builds upon prior work by Dr. Harry Auverman?
and Dr. George Goedecke.3-7 Section 1 of this part of the report includes a discussion of
some of this prior work, and provides a background for the balance of the development of
the structure function approach. The second section addresses the theoretical derivation
* of expressions for the general structure function and for the power spectral density. In
section 3, we develop a refractive index structure function for a simple turbulence model,
then, in section 4, we show how the minimum error method can be used to calculate a
number density dependence on eddy size, for a specific eddy model. Section 5
summarizes the results of part II.

In part III of this report, we begin the development of the mean field approach to the
multiple acoustic scattering problem. The self consistent field approach is applied to the
multiple scattering of acoustic waves from a turbulence distribution consisting of multiple
scattering sites of various sizes confined to a turbulence volume. This approach provides
a general and systematic procedure for carrying out a perturbation series for the system of

scatterers as a whole.

The averaging process for determining the mean field is model dependent. In the second
section of part III, we present the turbulence model employed for these phase I
calculations. Subsequent efforts which build from the current work may wish to employ
a different or more complex turbulence model, which will require re-evaluation of the

mean fields.



After describing our turbulence model, we discuss the properties of a single scatterer.
This is required as an initial step in the construction of the configuration dependent
equations for the scattered field of a system of N scatterers. In particular, these equations
are expressed in terms of the exact single scatterer result. We also present an exact result
for a particular single scatterer model. Any other model for the single site could be
employed, and approximate, or even empirical solutions could be used when exact

solutions are unavailable.

Following the discussion of the single scattering site, we proceed to the consideration of
the coupled scattering properties of a collection of N scatterers. This section is very
general, and culminates in the presentation of (1) an equation for the total wave in terms
of its contributions from the incident wave and the scattered wave from each of the N
sites, and (2) a system of self consistent coupled equations satisfied by the set of scattered
waves from the N sites. These equations, taken together, fully describe the multiple

scattering problem.

Following the development of the equations for the scattering from N sites, we briefly
discuss the probabilistic and statistical aspects involved in the characterization of the
configuration of the N scatterers. We then proceed to the evaluation of the coherent and
the incoherent scattered fields, as expressed in terms of the mean field. We next present .
the results of the preceding sections in a plane wave basis. Evaluation of the acoustic
signal which would be received at a remote detector is accomplished by means of the far

field approximation to the Kirchoff integral.

At the end of the theoretical development, a comparison is made between the current
formalism and the "first Born" treatment of Tatarski. It is shown that Tatarski's
- calculation of the scattered power follows from the more general treatment employed
here by keeping lowest order terms only, and making further simplifying assumptions in

the averaging process.

"In the final sections of the effort, we present the numerical arguments employed in the
computational algorithm, as well as provide the text of the code itself. We also discuss
the ways in which this code can be incorporated into the shadow zone analysis.




PART I

Eddy Number Density Distribution and the Structure Function

Introduction:

A direct calculational approach for the eddy number density distribution is developed,
using the formalisms of the index of refraction structure function, and the minimum error
method for calculating number density distribution for a particular model of turbulence.
Much of the work presented here follows closely the form and content of prior analyses
by Dr. G. Goedecke, from which it in part derives its motivation. Significant departures
are made from Dr. Goedecke's work in that assumptions that eddies must be confined to a’
lattice-like array of cells which subdivide the volume are dropped in favor of the
presumption that any given eddy may be found anywhere in the entire turbulence volume
with equal probability. We also depart from Dr. Goedecke by choosing to adopt an
approximate means to obtaining the number density distribution from a model which has
been fitted parametrically to the theoretical power spectral density, rather than
constraining ourselves to accepting only a model from which the ideal power spectral
density itself can be derived. These departures permit us somewhat greater latitude in the
development of an application oriented algorithm for modeling acoustic scattering effects
for a turbulent atmosphere. We begin the discussion by addressing the latter departure.

One might well expect to be able to derive the structure function and the corresponding
power spectral density of the fluctuating refractive index in terms of the constituent
eddies which make up the turbulence volume which exhibits these fluctuations. There is,
however, a subtlety here, related to the theoretical status of the structure function and of
the turbulent eddies. While at least in the inertial subrange, the structure function is
derived from physical laws and principles, a superposition of eddies of differing size is a
highly simplified and idealized mode! of turbulence. It is therefore unlikely that the true
physical structure function should be derivable from a particular model collection of
eddies. A more modest expectation might be that an appropriate collection of eddies
should allow one to approximate, to the desired accuracy, the physical structure
function.

Mathematically, this observation on the non-derivability of the structure function from a
simplified model presents itself in the fact that it is not possible to obtain a particular
arbitrary function, such as f ~ r2/3, from the superposition of an incomplete set of
functions, such as those which are discussed below in the context of the power spectral
density.



Lacking closure for the basis functions, the Minimum Error Method provides a means for
generating an approximate representation of the structure function in terms of an eddy
superposition. We detail below a method for obtaining a suitable structure function
approximation. The general outline is as follows:

-

We begin by making some observations on prior work. Next we write down the general
theoretical expressions for a general structure function and a general power spectral
density. This is followed by a development of expressions for these quantities based on
an eddy model of turbulence. The Minimum Error procedure is then used to determine
the optimal eddy number density distribution. Finally, we present a brief summary.

Section IL1

Observations on Prior Work

As discussed above, the work conducted in this program is rooted in the prior efforts of
Dr. Harry Auverman and Dr. George Goedecke. This prior work, both at and sponsored
by the Meteorology and Acoustics branch of the Army Atmospheric Sciences Laboratory,
emphasizes the development of a reasonable physical characterization of acoustic
scattering from turbulence, using a model built from the superposition of constituent
eddies. During the course of review of this earlier work, it became apparent that certain
aspects of the formalism might impose more constraints than were completely necessary
for the development of an acceptable scattering model. This section addresses these
difficulties.

The general formalism which was earlier developed seeks to first characterize the number
density of constituent eddies as a function of eddy size and then, for each size, constructs
a lattice of cells within the turbulence volume such that each cell contains exactly one
eddy and the collection of cells for a given size yields the correct volumetric eddy
number density. This procedure ensures that the correct number density versus eddy size
distribution is achieved throughout the entire turbulence volume. Each eddy is presumed
to exhibit an index of refraction fluctuation which is localized in space by an envelope
function which decays to zero in some manner as the distance from the eddy center
increases. Examples of such a construct would include a Gaussian envelope function,
which decays asymptotically to zero at large radius, or a "hard sphere” model in which




the index fluctuation falls abruptly to zero at some particular radius. In either case, the
eddy is characterized by some particular size.

In addition to the spatial localization of the refractive index fluctuation about a centroid,
the cell approach involves the localization of the centroid of the eddy within the cell
volume. While this aspect of the model leads to a computationally reasonable description
of the system of eddies , it appears to lack physical motivation, since it constrains the
eddies to particular regions of space without providing any particular physical force to
implement this constraint. It is apparent, for example, that a large longitudinal density
fluctuation in the overall medium could, in the physical world, result in the near total
depletion of eddies of a given size over a scale larger than the cell dimension. Such
depletion is, however, specifically denied by the cell formalism. ' '

In addition to this physical difficulty, there is also a computational difficulty with the
prior treatment. This difficulty arises as a consequence of the factorization of the
averaging procedure over the turbule distribution. The ability to factor an ensemble
average into the product of two separate averages over sub-ensembles arises in the event
that the two sub-ensembles are uncorrelated. In the earlier work, an initial factorization is
done into separate ensembles for eddies of differing size. A subsequent factorization also
separates the average into the product of separate averages for the density fluctuation at
different sites for eddies of a single size.

This particular factorization is a relatively commonplace practice in the computation of
multiple scattering effects, and is done in an effort to obtain a sufficiently simple
description of the system that one might be able to find a solution, but the assumptions
carry with them a secondary consequence. The factorization is only possible if the eddies
are uncorrelated, since otherwise the variables are not independent. This particular
factorization is therefore equivalent to stating that no two eddies communicate in any
way, or similarly, that the eddies are entirely uncorrelated. If the eddies are uncorrelated,
then once again there is no longer any particular reason to believe that they should be
confined to a particular region of space surrounding a lattice point. One would be more
inclined to believe that any particular eddy has an equal probability of being found
anywhere within the entirety of the turbulence volume. In this case, the probability
function which describes the likelihood of the eddy being at a particular point in space
would be constant throughout space. The corresponding Fourier transform of this spatial
probability distribution would then be a delta function in k space.

One final observation which was made during the review of the earlier work has to do
with the small r dependence of the derived structure function. The structure function can
be rather generally described as being of the form



D) = [ dk d(k) (1 - S‘i—’]‘q@).

A derivation of this form and a discussion of the assumptions which lead to this particular
form are presented below. This function has a quadratic small r dependence, provided
only that there is a maximum value of k for which Cﬁ(k) is non zero, owing to the small
angle properties of the sine function. If ®(k) is zero for all k larger than about 21/¢,
where £ is the small end of the inertial subrange, then all sine contributions to D will be in
the small argument limit for r</, and the function will exhibit quadratic behavior. A
consequence of this observation is that it will not be necessary to compute a particular
d(k) associated with the small r region of D.

Section I1.2

Expressions Derived from Theory for the Structure Function
and the Power Spectral Density

In analyzing the spatial structure of meteorological fields, it is appropriate to apply the
method of structure functions. The concept of structure function arises from a
consideration of a random function whose mean value changes slowly and smoothly,
rather than remaining constant.

A difficulty which arises in the analysis of such functions is that it is not immediately
obvious where to define the boundary between true variation of the mean value and very
slow fluctuations about that mean. Whenever the mean value ( f) changes, we can

consider instead the difference F = f( T ) - f( T+ l_i) ). For values of ﬁ which are not
too large, slow changes in f do not affect this difference ( at least approximately ).

‘The structure function is defined by

‘

D((F1,72) = ( [f@D - (D) . 2.1

-The difference between the values of f{( _l'-) ) at two points l_:; and F; is chiefly affected

only by inhomogeneities of the field with dimensions which do not exceed the
. - = g . . .
distance Ir; - r, |. If this distance is not too large, then the largest anisotropic

inhomogeneities have no effect on f(F;)-f( F;) , and Df(_ﬁ,?z) can depend
only on (F; - F; ). By contrast, the correlation function uf(_ﬁ,’?z ), defined by

10



u(PyP2) = [ @D - (FED) ] [ @D - (F) 1) 1122

is affected by inhomogeneities of all scales. In addition to this homogeneity property, if
the random field is also isotropic, then the structure function depends only on I F; - F; l.

A locally homogeneous random field f( T ) can be represented by

400 400 400 N .
f®) = f@ + [ [ [ (1-et¥T)dok), 2.3

where
dO@K) dO*(Ky) = 8(K) - ky) O(Ky) di; dk; 11.2.4

and CD(? ) > 0 is the spectral density of f. A general form for the structure function can

be obtained for the locally homogeneous random field by substituting the general form of
the field (equation I1.2.3) into the definition of the structure function (equation I1.2.1),
and evaluating the average, making use of the relation 11.2.4. Theresultis:

D, 12) = D{F1-F2, ¥) = DL F,T) = D(T)
= ( [f(P)- (D))
=( [f('?) - (7)) [f(T) - f(lf)]' ) (f is real)

400 400 400 400 400 +00

AT T eei® T yaed [ ][ (oelBT)a0m)

400
.o
[ R oy 1(1-eiki-T)|?

400
| dk, ®(ky) (1-cosky-T) 2.5

11



If, in addition, f is locally isotropic, then D(P) = Dg(r) and ®(K) = ®(k), and
relation I1.2.5 can be further simplified. In particular,

k2 dk sin® do do ®(k) [1 - cos(kr cos0)], I1.2.6

g 1
§—1%
8§ —1%

Ddr) = 2

where 0 is the angle between K and T . On performing the integrations, this gives

si

Dr) = sm [ (1-2% ) (k) k2 dk. 2.7
0

We therefore come to the overall conclusion that for a locally homogeneous, locally
isotropic random field, the structure function is of the form I1.2.7. As discussed above,

this function has a quadratic small r dependence if ®(k) posesses a large k cut off,
independent of the detailed character of the spectral density function & . In the next
section, we apply the formalism of this section to an eddy model of turbulence, to
characterize the acoustic response of the system.

Section I1.3.
Refractive Index Structure Function for a Simple Turbulence Model

As a model of turbulence we consider a collection of localized spherical eddies whose
size parameter forms a discrete spectrum. It is assumed that this description can be made

arbitrarily close to a continuum size distribution by increasing the number of sizes
allowed in the discrete size spectrum. We denote the number of sizes as Ng, and the

number of eddies of each size by Ny. The distribution of eddies is assumed to be

_completely random within a cubical volume V = L3. It assumed that the individual
eddies may each be found anywhere in the volume V.

The refractive index for this turbulence model can be taken to be a uniform background
value, assumed to be unity, with a superposed fluctuation about this background value

" associated with each of the eddies. We assume that all eddies of the same size have the
same functional form for their associated localized refractive index fluctuation. For the
chosen decomposition of the eddy population, this statement can be written as

n(r)-1-= I;:S % fo(F - Fng ), 11.3.1
a=1 ng=1 ¢ >

12



=2, . o - . s
where n(T ) is the refractive index of the turbulent system, I is the position of eddy
number ny of size parameter «, and fg is the function which describes the localized
refractive index fluctuation associated with an eddy of size parameter a..

The correlation function for this refractive index model is given by

w@, ) = {((@)-1) 0T -1) (generally)

- = -2, o
o=1 PB=1 ng=1 mg=1 (f“(r'r“a)fﬁ(r’rmﬁ»' n3.2

The structure function may be expressed in terms of the correlation function as
D(F. %) = ([ @@-n -a(P) -]

=w(*?,T)+ (@7 - 2@, 7" 1133

To evaluate the structure function for the selected eddy model, we first evaluate the
correlation function. It is convenient to separate relation I1.3.2 into two terms. The first

contribution is that portion which is diagonal in the size parameter, i.e.. for which B=a.
The second contribution is from the off diagonal terms. This yields

=2 3 3 e p - o -3y =
wr, M= X X Y (T -Tpy) fo(F'- Ty )
=1 ng=1 mg=1 o
o ol pl N - o - o
* a§1 gél n¢§=1 m§=l <fa(r-r"“)fﬁ(r-rmﬁ»' 34
Bz

A similar separation may be conducted for the eddy indices n and m, for a given size
parameter. This yields

- 9, Ns  Na - - - o
wr, r') = a};1 nZ_l ( fo(r -1y ) folT ‘rna»
=1 ng=

P Y33 (T (P )



; z z Y S (- By )
@z g naﬂlmﬁ_ ol = Ing IR T Tmgl7 35
(Bra)

At this point, it is appropriate to begin making simplifying assumptions. We will follow
here the same approach as that taken by Dr. Goedecke and others. The first assumption

we will make is that averages over turbules of differing size are uncorrelated. This will

allow factorization of the last term in relation I1.3.5. The result is

5 o Ns  Ng - o 2, o
u(r, )= X X {fur - Ty ) fa(T'- Ty )
a=1 ng=1 o
Ns Ng Ng N
+ X% 3 (T -Tag) fa(F- P )
a=1 ng=1 mg=1 a
(na?‘-'mu)

Na N - - -, = |
. z >: S (fu®-Thg) )BT}
_1g na-—l mg =1 B
P=a)

We next make the further simplifying assumption that averages over different sites, even
of the same size, are uncorrelated. This gives

REF) = 33 (falf - ) (PP

T D IR E ¥ BT AR DI AR )

14




N

Nu N
f ( fa(r l'nm) )¢ fB( r'- rmB)) .

"'l n —lm =
(Sm) ™" BT

It should be pointed out here that these particular assumptions amount to saying that the
likelihood of finding a particular refractive index fluctuation at any given place is
completely unrelated to the likelihood of finding any other such fluctuation at any other
place. This situation is really not very likely, and these assumptions are in all probability
violated. Nevertheless, we make these assumptions anyway, in an effort to obtain a base
solution from which to build a more sophisticated description.

We continue with the development of the equations, by adding and subtracting like terms
so as to complete the sums:

u(?, )

Ns Ng - - -, =
2 )) | ( fo(r ‘rnu)fa(r" rnu»

Ng Ny Ny
> > ) | ( foT-Tpgy) ) (fo (T l'm )

¥ Y | (fa(F - Fg)) (fa(F'- o)

0=1 ng=

Ns N - - =, =
¥R () AP )

a=18=1n;=1 mg=1

15



Ng Ng
- Z Z Z <fa(|' rn ))(fa( rma»-

a=1ng=1 mg=
Which can be rewritten as

SN (falf T fa(P )

Ng Ny ’
v 3 [ ¥ (@m0 ]l 2 ECE

N
2 [< fa® - rg ) [ a2 0]

a=1 ng=

NS Na 5 o NS
a2=1 na2=1 [< fo(F - Tng ) >][B§1 m5§= (£ rmﬁ»]

Nor Ne - o No =, o
BLE cra LY, )

Next we simplify the notation by introducing the functions

Nu
S(T) = < fo(T - Fng )Y

“a

16 .



which yields

-5 -2 Ns  No > - -, o
WE ) = D B (al o) ()
=1 ng=

Ns N - - s o
- 2 X A fa(f-rp ) (fa(r'-r )
a=1 ny=1 «

which simplifies to

. NS
v 3 I8Py ]lsa( ™ ]

+  S(T)S(™)

NS
- 3 [sy®) ]lsu® ],

Fr) fa(F- o)) = (BT - Trg ) EaP- T3 )} |

+S(T) S(T") .

17
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. =2 2 g T d) . .
The corresponding results for pu(r, r) and W(r,r') are obtained by direct
substitution, and the results entered into equation I.3.3, to obtain the structure

) - -
function D( F, r'").

In order to evaluate the averages in the above equations, it is convenient to introduce a
Fourier series representation. The plane wave basis described by the set of functions

.€2n7tx
{ :1 L ) } ,n=0,+1, £2, £3.. 3.7

[

is a complete orthonormal set on the interval [ _12_.’ %‘ }. We may therefore expand any

function of T defined in the volume V = L3 according to

$00 400 400 1(??)
()= ¥ I Ee
kx=-°° k_y:-oo k2=-z° )
. i(¥-7
E% £, e , 11.3.8
where
D =
~ 1 1k r |
L=y j &F () e o 1.3.9
v
and
> 2x

k=“L—7 s 1= (£1,€72,43) ; -0 < fj< oo, {; e {integers}

For this basis set, the completeness and orthonormality are respectively:

18




k- - =2
% e =&r-Tr') 11.3.10

A(R-¥"Y T

3 - {
.[d e =8, 113.11
v

<l

and

Making use of thcse last few results, it is now possible to evaluate the avcrages in the

functions D(r T ") and u(r T ". The average of the function fa(l' rna ) is given by
(aF - Trg)) = J B $al® - Frg ) PalFrg )

where pa(f; o) is the probability that the eddy ng is located at the position Ff)la'
Making use of the result I1.3.8, this can be rewritten as

i s
tk-(r-r
( nu)Pa(F;a)

(faF D)) = | By T F5 e
v K

= -

ik-r ik T

-~ - - 1k r

=Z fo e Jld3rna e o Palfng ). 113.12
K \'%

At this point, we make our departure from Dr. Goedecke's treatment. We will make the
assumption that the eddies are not confined to localized cells, but rather are free to
wander anywhere in the volume V with equal probability. This assumption can be

expressed as

- 1
pa(rna) =3 [1.3.13
Substituting this into the integral, we obtain
ik-T 1 ik-T
- = ~ : - - .
(fa(r-rna))=§ f; e v .[/d3rnae Mo
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=§-,fa—ﬁ € 8—»6;
- 113.14
Similarly, we find
(£ - Tng) M o' 1))
-5, 9 o S
=(%f;§ eik(r-rna)%:-;i elk'(r'rna)>
B | '
_ ZZ FF elk-relk-r< 1(k+k)-r,,>
R
-, !
_ ~ o~ ik-(r-r)
= % - fa—i‘ €
.o
. ik- K
= 2?‘. f2 f4 ¢ 1L3.15
Substituting I1.3.14 and I1.3.15 into I1.3.6, we find
Ny Ny R R
= I _ ~ 1k ~ o~
u(r, r) = a2=1 nazzl [ %" foi fa:i( € T al fa'd]
Ng Ng _ N N -
f f
¥ aZ:I naz=l of BEI ng=1 go
Ns . ik-ﬁ = \2 Ns = \2
= az-:-lNa[ % fa} faj‘e - (fda) ]+(a2_-:_1N“ f(13)
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Ng 11.3.16

Similarly, we have
27 2 2h ol 2 F F Ns £ \2 p £ \2
u(r,r)=u r,r)=mZ=lx~:0L . fy fam-azlea(faB) +(a§1Na faT)) )

I1.3.17

Substitution of the correlation function into equation II.3.3 for the structure function,

gives
D(T,F) = Z;,SN Y £, f
L T - T

Ns ~ ~ ik K
+ 2(12—1Na§ fu-i faie

), I1.3.18

"
[\
™M
Z
R

=

a2}
=

)
<

&

which can also be written as
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Dy(T.F) = 22  No Z f. £ (1- cosK-R), 3o

because the sum is over all ky, ky, kz from -2 to +oo, and ( fo:i fa32 is even.

-

If we now take the limit as L — oo, the result is %—-)W I d3k which yields
- - -
D( T, r')-2z Na(2)3jd -;((1'9031‘ R), 1320

Which is of the same form as Tatarski equation. 1.41:

-

D(T = 2 [ O®)(1-cosK-R),

with
N
- \Y S ~ ~
oK)= 55 X N iz fg 1.3.21
section IL4
Minimum Error Method

In this section we apply the minimum error method3? to determine the optimal number
density distribution corresponding to a specified theoretical power spectral density
_ function. The total squared error of the model power spectral density ®(K)model relative
to a theoretical power spectral density ®(k)peory is given by

kmax

E(®®)mode1) = I [®®)theory - O®)moder] 2dk 4.1

Kmin
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In relation I1.4.1, ®(K)jheory is derived from the structure function, while ®(k);,04e] may
be expressed as a sum of the form

Ns .
SW)model = a);lna‘*’a, .42

where the n, are the number densities of eddies of Size parameter &, which serve as
expansion coefficients to be optimized. The ¥, are particular to the model, and will be
discussed further below.

The quantity E(®(K)moger) is minimized if

%E _0, forp=1,2,..Ns 4.3

anB

Performing the differentiations in I11.4.3 yields

kmax
E
0 =2"' = J dk 2[¢(k)t.heory - (b(k)modeI] id)(k)model .
anB kmm anB

On evaluating a_a"‘b(k)model , the resultis
ng

d s N
— &k = — v = Wa(k
anB (®)model anB a2=: l"a a(k) B( ).

Substitution of this result for the derivative yields

Kmax
0= j dk [‘b(k)meory = <I>(k)model] ‘Pﬁ(k),

Kmin

which on substitution from I1.4.2 yields

Ns Kmax kmax
X g [ dk %00 ¥ = [ Ak @meary FpK).
- Kmin kmin
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At this point it is convenient to introduce the usual definition of the inner product as

kmax
(¥, %) = [ dk YoM ¥, 4.4
Kmin .

so that the previous result may be compactly written as

Ng |
az_ . Ng ( \PO. ’\Pﬁ ) = ( ‘PB ’(Dtheory) , for B = 1, 2, very Ns. 4.5

The Uniform Sphere

As a definite example, we consider the case of the homogeneous uniform sphere. The
refractive index fluctuation is given by

Ay, IT-T, 1< a
fo(T - Fny ) = O .46
0, otherwise.

The Fourier transform of the index fluctuation is given by

A -
= ﬁg _vq [ sin (kag) - kag cos (kag)] 0.4.7

with the properties that

~ ~

Tc’l=fak’ fakxsrca], and fak= g(—k)'

!

g"ﬁ

foi=l

Making use of equation I1.3.21, we have
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- A% Ns
oK)= @n)3 c;zZ:lN"l ek’

oL % Na [45 58 sin (kag) - kag cos (kag)]

Ns

Y e 2 A“ (sin (kag) - kag cos (kaa))2
a=

where use has been made of the relation

Ng
Vv~ —constant = ng as V — oo,

We may now make the association with equation I1.4.2, identifying that

2
Yo = 229 (sin (kag) - kag cos (kag))>.

4.8

149

The relations I1.4.5 form a matrix equation with the ( '¥q,'Wp) as matrix coefficients
relating the unknown vector to the vector ( ¥g Diheory) - The choice of Dypeqry can be
dictated by the structure function. We have, for example, & e k!1” for the Kolmogorov

spectrum in the inertial subrange.

Within the confines of the uniform sphere model, the choice of magnitude of refractive
index fluctuation, Aq, for each size bin is an unspecified parameter. It is still possible,
however, to solve the system of equations for the products of the number densities, ng,
with the fluctuation magnitudes, Aq. The W can be written as the product of a scalar

constant with a function of kag. This gives
\Pa = Ca g(kaa),

where
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C, = Zha 2’
@ on
and
(sin (ka) - ka cos (ka))?
g(ka(l)=‘ (kaa)6 ¢

With these substitutions, equations I.4.5 can be rewritten as

NS
af_, Mo CaCp(gq-28) = Cp(gp Piheory) : forf=1,2,..,N;.

or

NS
aZ_l[naCa](ga,gg) = (g8 Pheory) » forp=1,2,...,Ns. 410

The system of equations 11.4.10 can be solved for the products nyCq , without prior
knowledge of the manner in which the magnitude of the index fluctuation varies with
size. We include below a simple subroutine for evaluating the required inner products for
the homogeneous uniform sphere model. The routine is written in standard FORTRAN,
and so should readily compile on virtually any computing machine, using virtually any
compiler.

Numerical Algorithm for Number Densities

program fintk
dimension a(20),fint(20,20),fint2(20)
¢ obtain an upper bound on the number of steps to
c allow in the integration process.
write(6,*)' input integral step limit'
‘ read(5,*)n
c
c open up the input and output files
open(2,file="fintk2.inp")
open(1,file='fintk2.out’)
c
c set the chosen number of eddy sizes
m=35
c
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¢ initialize required variables:

c
¢ irrational number PI
pi =3.141592653

c
¢ lower limit of k space integration is 2P1/L, where
c L is the upper end of inertial subrange eddy
c size. L is about 100 meters, =10000 centimeters.
fk = 2.*pi/10000.
c
¢ upper limit of k space integration is 2P1/lo, where
c lo is the lower end of inertial subrange eddy
c size. lo is about 1 centimeter
uplimk = 2.*pi .
c
¢ beginning step size dk is one tenth of smallest k
deltak = .2*pi/10000.
c
¢ initialize each integral
do 700 k=1,m
do 600 j=1,m
600 fint(k,j) = 0.
700 fint2(k) = 0.
c note, The fint(k,j) are the inner products
c between the g functions.
c The fint2(k) are the inner products
C between the functions g and phi.
c
¢ Read in the chosen eddy sizes
read(2,*)(A(k).k=1,m)
c
c
C === - -
C
c
¢ Perform the integration
do 1000 i=1,n
do900k=1m
do 800 j =k,m

¢ note, the matrix is symmetric, so do upper half only

c
800 fint(k,j) = fint(k,j)+deltak*g(fk*a(k))*g(fk*a(j))

900 fint2(k) = fint2(k)+deltak*g(fk*a(k))*phi(fk)
c

¢ increment k by the differential dk
fk=fk+deltak

c

¢ modify step size to get faster run time
if(deltak .le. 0.01*fk)deltak=1.02*deltak

27



C

o

exit loop on reaching upper limit
if(fk.gt.uplimk)go to 1050
c
¢ put a few output statements into the loop to allow
¢ monitoring of accumulating integrals.
if(i.eq.10)write(1,20)fk,((fint(k,j)j= 1 ,imn)k=1,m)

. (fint2(ii),ii=1,m)
20 format(1x,k="f15.6,/,6(5¢12.5,/).//)
if(i.eq.100)write(1,20)fk,((fint(k,j),j=1,m),k=1,m)
(fint2(ii),ii=1,m)
if(i.eq.300)write(1,20)fk,((fint(k,j),j=1,m),k=1,m)
(fint2(ii),ii=1,m)
if(i.eq.500)write(1,20)fk,((fint(k,j),j=1,m),k=1,m)
(fint2(ii),ii=1,m)
if(i.eq.800)write(1,20)tk,((fint(k,j),j=1,m),k=1,m)
(fint2(ii),ii=1,m)
if(i.eq.900)write(1,20)fk,((fint(k,j),j=1,m),k=1,m)
(fint2(ii),ii=1,m)
if(i.eq.1000)write(1,20)fk,((fint(kj),j=1,m),k=1,m)
(fint2(ii),ii=1,m)
if(i.eq.10000)write(1,20)fk,((fint(k,j),j=1,m),k=1,m)
(fint2(ii),ii=1,m)

1000 continue

c end of integration loop

C ..................................
c

c fill in the lower half of the matrix
1050 do 1200 k=1,m

do 1100 j=k+1,m
1100 fint(j,k)=fint(k.j)

1200 continue
c .
¢ perform output of final result to output file
write(1,30)fk
30 format(10x,'k=",f10.3)
write(1, 10)((fint(k,_)),_]—1 ,m),k=1,m),(fint2(i),i=1,m)
10 format(1x,5¢12.5)
c

¢ write result to screen
write(6,10)((fint(k,j),j=1,m),k=1,m),(fint2(i),i=1,m)

c
c that's it...
stop
end
function g(x)
g = (sin(x) - x*cos(x))**2/x**6
end
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fur}ction phi(x)
phi = x**(-11./3.)
end

This routine provides the required matrix elements for evaluating that number density
distribution as a function of size parameter within the uniform sphere model, for any
particular choice of size bins, which gives the best least squared error to the Kolmogorov
spectrum. Any other choice of refractive index model can be used in place of the uniform
sphere, by simply replacing the functions g and phi with their corresponding equivalents

Section ILS
Summary of Computation of Number Densities

Our procedure for obtaining the eddy number density distribution corresponding to the

atmospheric index of refraction is summarized below.

1. Starting from the structure function of interest, as shown in figure 1,

~constant

—>

lo i..
Figure 1. Index of Refraction Structure Function

construct its theoretical spectral density. This step can always be accomplished because
the correlation function and the spectral density are Fourier transforms of each other and,
by equation II.3.3, the structure function is expressible in terms of correlation functions.
Since the structure function consists of three distinct regions, one method is to obtain a
spectral density for each region, and impose a continuity requirement.
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2. Based on a model of a single eddy, such as the uniform sphere or an exponentially
decaying spherical distribution, calculate the model spectral density.

3. Apply the minimum error method to obtain the optimal number density size

distribution, i.e. the number of eddies per unit volume of each size, which best matches
the model to the theory derived from the structure function.
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Part III
Acoustic Scattering from Turbulence

II1.1. Introduction

The self consistent field approach is applied to the multiple scattering of acoustic waves
from a turbulence distribution consisting of multiple scattering sites of various sizes
confined to a turbulence volume. The self consistent field method has previously been
successfully applied to the multiple scattering of vector electromagnetic waves. The
present work extends the methodology to the multiple scattering of scalar acoustic waves.

In constructing the self consistent field method, it is assumed that the wave scattered by
each scatterer is proportional to the wave incident on that scatterer. The wave incident on
that single scatterer is assumed to consist of the combination of the wave incident on the
system of scatterers and the scattered waves emitted from all other scatterers. Similarly,
the waves emitted by all of the other scatters are influenced in part by the emitted wave
from the particular single scatterer. In this way, both the wave incident on the single
scatterer and the wave emitted by that scatterer include the effects of scattering to all
orders. This approach provides a general and systematic procedure for carrying out a
perturbation series for the system of scatterers as a whole.

A key factor in the methodology advanced here rests in the computation of a mean field.
This involves evaluating averages over the configuration of scatterers before computing
the scattered wave, rather than evaluating the scattered wave resulting from particular
configurations and later averaging the results. The averaging process for determining the
mean field is model dependent. In the succeeding section below, we present the
turbulence model employed for these phase I calculations. Subsequent efforts which
build from the current work may wish to employ a different or more complex turbulence

model, which will require reevaluation of the mean fields.

After describing our turbulence model, we discuss the properties of a single scatterer.
This is required as an initial step in the construction of the configuration dependent
equations for the scattered field of a system of N scatterers. In particular, these equations
are expressed in terms of the exact single scatterer result. Here too, the final results will
depend in part on the model selected for the scattering properties of the single site. In the
third section of this part of the report, we present an exact result for a particular model of
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the single scatterer. Any other model for the single site could also be employed, and
approximate, or even empirical solutions could be used when exact solutions are

unavailable.

Following the discussion of the single scattering §itc we proceed to the consideration of
the coupled scattering properties of a collection of N scatterers. This section is very
general, and culminates in the presentation of (1) an equation for the total wave in terms
of its contributions from the incident wave and the scattered wave from each of the N
sites, and (2) a system of self consistent coupled equations satisfied by the set of scattered
waves from the N sites. These equations, taken together, fully describe the multiple

scattering problem.

Following the development of the equations for the scattering from N sites, we briefly
discuss the probabilistic and statistical aspects involved in the characterization of the
configuration of the N scatterers. In particular, we discuss the extent to which the
probability of finding a particular configuration is or is not factorable into separate
probabilities for finding a particular scatterer at a particular given position.

We next proceed to the evaluation of the coherent and the incoherent scattered field.
Rather than solving explicitly for the scattered fields and then averaging, the averaging
operation is taken first in order to find an approximate equation obeyed by the mean field.
The mean field is a much simpler object, depending on the observation point only, and
not on the positions or states of the individual scatterers. The coherent and incoherent
scattering are then expressed in terms of the mean field.

‘In preparation for the implementation of the approach in a numerical algorithm, we next
present the results of the preceding sections in a plane wave basis. Evaluation of the
acoustic signal which would be received at a remote detector is accomplished by means
of the far field approximation to the Kirchoff integral. A comparison is made between

“the current formalism and the "first Born" treatment of Tatarski. It is shown that
Tatarski's calculation of the scattered power follows from the more general treatment
employed here by keeping lowest order terms only, and making further simplifying
assumptions in the averaging process.
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In the final sections of the effort, we present the numerical arguments employed in the
computational algorithm, as well as provide the text of the code itself. We also discuss
the ways in which this code can be incorporated into the shadow zone analysis.

II1.2. Turbulence Model

»

Our model of turbulence consists of a finite concentration of homogeneous, discrete,
spherical scatterers of refractive index n and radius a. The scatterers are permitted to be
of various sizes, but all scatterers of a given size are identical. To simplify the
calculations, all scatterers are assumed to be confined within a rectangular volum.e, but
distributed in a random way, with no correlations between scatterer locations. The
independent parameters of the model are: 1) the number density of scatterers of a given
size, 2) the refractive index of each scatterer, and 3) the radius of each scatterer. These
quantities are fixed by experimental data on the turbulent atmosphere, supplemented by
theoretical information such as that provided by the index of refraction structure function.

II1.3. The Single Scatterer

The self consistent approach to the multiple scattering problem is a bootstrapping
procedure which begins with a solution for the scattering of a wave from a single site.
For the current effort, we will work from an exact solution for single site scattering, using
the homogeneous sphere model discussed above. An approximate solution using some
other model could also be used, provided only that the scattered wave from a particular
site is linearly related to the incident wave on that same site.

The linearity assumption is easily represented, using the mathematical formalism of
Hilbert spaces. The linearity is preserved whether we use a configuration space
representation for the wave, a momentum space representation, or any other

representation which lends itself to the selected model. In particular, if we let the
incident field be described by the simbol Ir;), then the scattered field can be described as

a linear function of the incident field:

Iny="TIm). m.3.1

In its most general form, the scattering operator"f‘ depends on the incident and scattered
wave vector, the material properties of the scatterer, and on the geometry of the scatterer,
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but not on the fields. The fields Ixg) and Ix;) are Hilbert space vectors, and the scattering
response T is an operator in this space. The equation IIL.3.1 is an abstract and formal
representation of the scattering process. In the next paragraph we address the explicit

coordinate space representation.

The basic equation for sound propagation in a moving medium can be written (see
Tatarski, equation 5.1) in the form

VZP-—‘i(§+ uii)zp =0, [1.3.2
c< ot axi

where P is the potential of the sound wave, the u; are the components of the velocity of
the medium, and c is the velocity of sound. If we assume a harmonic oscillation for the

sound wave, then P can be written as

On inserting this form for P into equation III.3.2, and keeping only terms to first order in
the dimensionless fluid velocity u/c, we get the linear result (Tatarski, 5.5)

- '
V2r + k2 = -2ik %—-Vﬂ:+ k2%1t, I1.3.3

where k = w/c is the wave vector of the sound wave. We note that equation I11.3.3 is
linear. We further note that the properties of the medium enter into the equation via the

- fluid velocity W, and the temperature dependence of the sound velocity c. For simplicity
in this initial development of the model, we will drop the velocity dependent term in
I1.3.3, and consider only temperature fluctuations. Treating the remainder of the right
hand side of the equation as a source term, equation I1I.3.3 may be rewritten as an

| inhomogeneous integral equation:

K7 -7 o

n(F) = my(T) ,#J‘ av'= I“(?') I.3.4

EECT

X7

where no('l")) = ei
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The second term in II1.3.4 describes the scattered wave both close to and far from the
scatterer. For a homogeneous spherical scatterer of radius a, equation II1.3.3 (or 4) has a
well known exact solution. In this case & satisfies a homogeneous equation,

V2r + k2 =0, | IL.3.5
outside the scatterer, and a similar equation inside but with a modified wave vector. The
solution everywhere is obtained by demanding continuity at the spherical boundary. For
scattering by a sphere, we take advantage of the symmetry by choosing functions = that
satisfy the homogeneous wave equation in spherical polar coordinates (r, 8, ¢).

The eigenfunctions =(r, 8,¢) = R(r) ©(8) d(¢) that are single valued in ¢ (except
possibly at points on the boundaries between regions with dissimilar properties) and finite
at 8 = 0 and 0 = x are given by

" cos(md)
ﬂnnnmg;:) }={ sin(mg) } P, (cos8) Zp(kr), I11.3.6

where P,™(cos8) is the associated Legendre function of the first kind of degree n and
orderm(n=0,1,2,..,0;m= 0, 1, 2,..., n), and Z,(kr) is any of the four spherical

Bessel functions:
) i
e = \/5 Jon®

n® = VE Y,.,,0

hn(l)(P)

3, (0) +ia(P)

) = @ -iv®. 3.7

Here, J 12 and Yn+ 1 are the half integral Bessel functions of the first and second kind,
in apd yy, are the spherical Bessel functions ( with ‘\/—%— introduced for convenience), and
hn(l) and hn(2) are the spherical Bessel functions of the third kind (also known as
spherical Hankel functions).
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S ine f Uniform Sot

In this section we present a rigorous treatment for scattering from a localized refractive
index perturbation which can be modeled as a uniform constant value, different from
unity, inside a sphere of radius a, with a refractive index of unity everywhere outside the
sphere. The geometry of this configuration is illustrated in figure 2.

*Z

Region I

<V

Figure 2. Uniform Sphere Model

Region I is taken to be the region of unperturbed atmosphere outsied the sphere, where
the refractive index is unity. Region II is presumed to also be characterized by a constant
refractive index, but which differs from unity. In either case, the propagation of sound is
characterized by a source free (homogeneous) differential equation:

Region I: V2+k)m; =0

Regionl: (V2+q®)mn; =0 01.3.8
 We require that the solution should behave as an outgoing spherical wave at infinity, in
region I, and that the solution should be finite at the origin, in region II.

At the interface, the two regions are connected by appropriate continuity conditions. In
particular, if the pressure on the inside of the interface differs from that on the outside,
then the arbitrarily abrupt interface would be subjected to an infinite acceleration. We

therefore require that at r = a, the pressure must be continuous, i.e., atr = a, p;=py.
The pressure continuity requirement is in essence equivalent to conservation of
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momentum; if the fluid were to flow with respect to the turbule, we would require
conservation at the boundary of the total momentum p + pu? (in a frame fixed to the
sphere). The second requirement is that the normal component of velocity should be
continuous. This requirement is essentially that of conservation of mass, with the

d
generalization for the flowing fluid V. pﬁ’ + 32 = 0, since we do not have sources or
t .

sinks at the interface.

An acceptable interior solution can be constructed from those polar coordinate solutions
to the homogeneous differential equation which are finite at the origin:

o0 n
T (1,6,0) =n§b jn(qr) [ap Pp(cosb) +m§1(anm cos mé + bym sin mo)P, " (cos8)]. 139

Acceptable exterior solutions are constructed from those solutions which behave as an
outgoing spherical wave at infinity:

. a n .
71(1,0,0) =n§0 hn( )(kr)[cnoPn(cose)+m2___:1(cnmcos mo+dpmsin mé) an(cosB)]. 113,10

In addition to the scattered wave 7; , region I also includes the incident wave:
ikz 5 1
Tipc©0.0) = €% = 3 (2n+1) iM j(kr) Py(cosh). I3.11
The condition of continuity of pressure at the interface can therefore be written as

-iwp' My = -iwp(M+My) ... (evaluated atr =a)
or equivalently,
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o0 n
p' nE) jn(qa [ap,Py(cos6) +m2=l(anm cos m¢ + bam sin mo)P," (cos8)]

* n
=p ngb hn(l)(ka) [cn Pn(cosB) +m§ : (cnm cos m¢ + dnp sin m¢) an(cose)]

+ pnz) (2n+1) i? j(ka) Pp(cos8), I.3.12
from which we find, on equating the coefficients,
P’ in(qa) 2y, = p [y (Ka) co+ (2n+1)i0 jy(ka) ]
0" jn(Gd) 2nm = P hy (ka) Cam .. (M21)

0’ jn(@) bum = p hy(ka) dpm ... (m21). 11.3.13

Similarly, the continuity of the normal component of u' can be written as

L) _ o1 +Tin0)

or or

... (evaluated at r=a),

from which we find
Qji(qa) an, =k [hy(ka) cp+ (2n+1) M jp(ka) ]
o (1
qjs(q®) 2am = KhyPka) cpm ... (m21)

., i
qji@2) bam = kb, Pka) dpm .. (m21).. I.3.14

For the general k, g, and a, these equations make contrary demands for the relationship
‘between apm and cpm , which can only be simultaneously satisfied if agm = ¢pym =0. The
same argument applies to bnm and dnm . We therefore conclude that the w(r,0,¢) must be
of the form




jn(@r) ap_Pp(cosd) ; r<a
n(r,0,0) = 2 n(@) ang P

o .
1
n& hn( k) Cn, Pn(cosB) ;r2a, HL3.15

with ap_and ¢, givén by the solution to the coupled equations
- 1 -
D' in(qa) q, - P hn (Ka) cpy = p (2n+1) i jp(ka)

. (1) _ o ot
qjn(a) an, - khy “(ka) cp =k (2n+1)i" jp(ka) . I1.3.16

Hilbert Space Formulati

To conclude this section, we return to the fundamental acoustic wave eauation with which
we opened, but this time continue the development in our abstract Hilbert space
formalism. Using this approach, we will rewrite the equation for sound propagation in
the absence of fluid motion, and solve it exactly , in a formal manner. Reproducing
equation II1.3.3 (but neglecting the velocity contribution), we have

(V2+KD)n = k2 % x, m1.3.17

The propagator in the the unperturbed atmosphere is given by

V2+K20, = 1 IM.3.18

Where 1 indicates the unit matrix or identity operator. On solving this equation for the
free propagator 2o, we get -

B = (V2+k2)1, 11.3.19
Equation II1.3.17 may now be rewritten in Hilbert Space notation as

8 i) = kzt_t' ). I1.3.20

The general solution to I11.3.20 is given by

) = Iny)+ B k2T In), Im.3.21

39



where Im,) satisfies a homogeneous equation which can be written in the coordinate
space representation as (V2 + k?)n, = 0. Equation IIL3.21 is an integral equation

. . . t . .
for It ) , which can be solved by iteration. The operator sz is responsible for

scattering, and is therefore a scattering potential; for simplicity, we rename it to be 9.
Iterating on equation II1.3.21, we find !

In) = Ing )+ Bo V')

Ity ) + BV [Iny) + oV [ Ing)+...1]

Ity ) + Bo¥'imy )+ (B ¥ P iy )+ ..

Iy ) + Bo( V' + VBV +..)Imy)

Iny ) + ’g\oo' (- @oo' )-1 Ino )

= Iy )+ 28 Ing) 1.3.22

where
§=(1- 87! 11.3.22
= 0+ 080+ U8 VY +.. . I1.3.23

The result IT1.3.22 is an exact solution to II1.3.21, valid to all orders in the scattering
potential. If we take the incident field to be given by I, ), then the term 208 Im, ) is the
exact solution for the scattered wave and is therefore equal to T Im; ) in equation IT1.3.1,
provided we take the incident field to be In; ) = In, ). In practice, this incident wave is

‘generally chosen to be a plane wave. To summarize these results, we can make the
identification

= 88 =2800-%M 1I1.3.24
Successive orders of approximation to are given by

It) = Imy ) + |1t)(1)+ I )(2) + ..

mYD= ¥ In,), etc.

The contribution Ix )(1) is the quantity identified as the Born approximation.
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Section II1.4
The System of N Scatterers - -

The cornerstone of the development of the scattering formalism for a system of scatterers
is the solution to the single site scattering problem given in section IIL.3:

ng) =T Im;) . 4.1

When considering a system of N scatterers, however, the wave incident on a given
scattering center is not merely the wave incident on the system, but is rather the

combination of that incident wave and all the scattered waves emanating from the other
N-1 scattering sites. Let Ip;) represent the acoustic wave incident on the system of

scatterers, and let lns(F) ,'B)j )) represent the wave scattered by the scattering center
located at the site '5; , where '53 is a generalized coordinate comprising both the position

_r‘} and size o The total acoustic wave can be represented by an expression of the form
- -
np(P)) = 1py) + Z (7)), I1.4.2

which explicitly states that the total wave is the sum of the incident wave and the waves

scattered by each of the N scattering sites.

The total wave is clearly configuration dependent. If we let the notation {—b’j } denote the
set of scattering center locations associated with a particular configuration, then this
configuration dependence can be made explicit by writing

m7(P; (B, D)

P +% | n (P, B (B)')), I.4.2a

where the notation {Tj)J }' = {B].5,.B ,...l)_jtl,ﬁjil,...[)';;} allows us to specifically
extract the dependence on site j, and emphasize the fact that the wave scattered at site j
depends on the specific configuration of the other N-1 scatterers. -
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The wave incident on scatterer j is given by

IW(7P)) = Ip) + Z |ns{?‘,5’( N, I1.4.3

= Iny(P)) - (7. B)). I1.4.3a

Making use of the single scatterer result, IIL.4.1, the scattered wave from site j can be

written as

(7P, B)) = T(T/B) W(P). I.4.4

If we substitute the result I11.4.4 into the relation II1.4.2 for the total wave, we get the

result
m (P = ) + T T(EH) (P)) . 4.5

If we further substitute II1.4.4 into II1.4.3, we obtain the result that the Inj(?))) obey a

system of linear integral equations

W(P)) = Ip;) + Z t (7B 1T)). I1.4.6

Equations II1.4.5 and IIL.4.6 constitute a set of self-consistent coupled equations which
completely determine the multiple scattering problem.

Section II1.5
Statistics

Let p({ 1) denote the configuration probability density and {d3b } the volume element

for the N scatterer system. The probability that scatterer 1 will be found in d3b,
about Fi , and that scatterer 2 will be found in d3b; about 53, and that scatterer 3 will
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~ be found in d3b3 aboutFS , and ..., and that scatterer N will be found in d3by about 5;;,

is given by
p({ B} }) {d3b5) , 5.1

a quantity whose integral is normalized to unity. The probability density for a particular

subset n of the N scatterers, such as {B’i ,5)2 B'S ,5; ; n<N}, can be found by integrating
the probability density for the N scatterer system over the remaining variables not in the

particular subset:

p((B} ,B3.55,..B,; n<N)) = [ d3bpy .. B30y PUTE D). I1.5.2

We will denote a completely random distribution, i.e. one which factors completely, by

the probability density
p((B D) = p(B1) pp(B3) py(B3) ... pR(BR) - ImS3

If the probability density is not completely random, and hence does not factor completely,
but rather factors only partially, this can be represented as

BB = Pl D) Pl (B M/BRA)), m.s.4

where the last factor denotes the distribution for particles n+1, ..., N, when the values of

{B; } are known.

The configuration average of the total wave is given by

- | [L5.5
(P = (a3} p{ B} ) (T (B 1)) ‘

If n of the scatterers are held fixed, this will be denoted by a subscript:




- 5. I1.5.6
(P = [ (d3bnan) Pyl (Ba M/ (B} ) 1P (B} ).

The principal use which we will make of expression IIL.5.6 is to evaluate the
configuration average with one of the scatterers, say scatterer k, held fixed, in which
particular case expression IT.5.6 would be written as

aLs.7

(7)), =f d3b,d3b, ...d3by.1d3by, 1 ...d3by pr.1(BR /(B Inr(F; { T 1)

Note that probability distributions may be converted to density distributions by
multiplying by the appropriate power of the number of scatterers, for example:

n(5})=N py(B1):  n(B1.B3) = N2py(B1.B2) . 1.5.8

Section II1.6
The Coherent and Incoherent Waves

It is generally not possible to obtain the total wave for a given configuration of scatterers,
nor is it necessary, since we are interested only in the first and second moments of the N
scatterer probability distribution. In this section we will use the statistical relations of the
preceding section to perform the required averages, and obtain averaged expressions for
the coherent and incoherent contributions to the scattered wave.

Coherent Scattering

_The average over II1.4.5 may be performed using relations II1.5.5 and II1.5.6, along with
relation I11.5.4, withn=1.

n1.6.1

mp) = ip) + = [ % pu(B) () mh;

where the object



wy = (P B
= | d3b; d3b, ..d3b;) db,; .d3by pra(B/ (B} 1w(P5 (B ). mL62

defines the effective field, and represents the field incident on the particular scatterer j
whose position is known, averaged over the distribution of all other scatterers. Note that

the 7 dependence is still implied, but has been dropped from the explicit notation in
relation IIL6.1. '

The effective field differs from the total field by the field emitted by one scatterer. If the
number of scatterers, N, is large, then the effective field is approximatély eqfial to the

coherent field:

_ — 11.6.3
), = Rp(F)) .

This last statement is true for each of the N scatterers, so that when this approximation is
inserted into relation II1.6.1, the summation over j is simply replaced by a multiplicative
factor N. In particular we have

—_— R 1.6.4
where

T =N | % p(B) T(B) and Np(B) =n(B). T

This approximation replaces solving the system of N coupled linear equations for the
total field (relations II1.4.5 and I11.4.6) by a single integral equation for the coherent field.
Iterating I11.6.4 we get
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In) = (1+ T +(_T—)2+...)!pi)

=(1- 1 ylip). [L.6.6

Incoherent Scattering

The density and directionality of incoherent radiation is given by the (T 1. Fz ) matrix
elements of the quantity | 7y ){ g |. We now proceed to obtain an equation for this
quantity, starting from the basic relation II1.4.5 and its dual. In the following, we will

drop the explicit T and {'l?- } dependences from the explicit notation, leaving those
P p j p g

arguments as merely implied. Specifically, we get

lnT)=|pi>+§:Tj|ni> [11.6.7
and (npl=(pil+ 2 (AT I1.6.8

On taking the difference between the average of the product and the product of the ‘
averages of equations I11.6.7 and H1.6.8, we get

I1.6.9

lTCTXTtT| = ITCT> (nTI+JZijInj)(nkITkT- TJITC’) (kklfkT

The éverages of the diagonal and off diagonal terms of the second quantity on the right
hand side of relation IT1.6.9 are:

I1.6.10

Fiady(altht = J a3b; pi(B) T (B C1ad) (1) THCE

(B 1oy (2B
= | a3b;a%bypy(B; BT (B (18X w1 T B, T



Relations IT1.6.9 through IIL6.11 are exact. To simplify the problem we make similar
approximations to those made in the coherent case:

(I—n—’)_.).’ = lﬂT) ’

A4

———

() (1) = Inp)(nrl,

lfl‘j)<1tk|)jk§ “t'r)<1['r|

and Nn.6.12

At this point, it is convenient to introduce three super-operators, R, M, and Q . These
super-operoperators are defined for and operate on any given quantity X which is
independent of the configuration of the scatterers and their states. The operators are
defined by:

RX = Tx r!t

MX = N[ d pE) TE X TIE)

and Q X = NQ-I)Jd;dbypy(B BT (B) X TG, 613

Using relations I11.6.12 and the super-operators IT1.6.13, it is possible to rewrite equation
I11.6.9 as '

Inp X gl = Ing) (mpl+M +Q) InpXnrl -R Ing) (=gl II1.6.14

If we add to both sides the quantity R (Inp) (mp! - InpXnpl ), weget

(1-R) (TmgXng! - Iagy (mpl ) = (M +Q -R) InpXngl, I1.6.15

47




which is readily written as an inhomogeneous integral equation:

Inp){rpl = Inp) {mpl+L lnp)(nr!, I11.6.16

where
L =(1-RY!M+Q R). 1.6.17

Upon iterative expansion of II11.6.16, we obtain the following power series for the

incoherent radiation:

ITET)<1CT| =(1+L +L2+L3+...) IKT) (KTI

- (1 Ly ln_-r)— <—7;T—| [1.6.18

From II1.6.18, it is evident that the coherent radiation term Imp) (mp! actsasa source

term for the incoherent radiation | ) { = ! . The composite superoperator L generates
successive powers of incoherent scattering. On neglecting L , or equivalently on
considering only the L O term in II1.6.18, the radiation is all coherent and we have

Inp){npl = Inp) (nrl. IIL6.19

The operatorL  generates only incoherent scattering, with successive powers representing
radiation that has been incoherently scattered once, twice, and so on. The M term

represents the purely incoherent addition of the the intensities of individual scatterers,

‘while the term Q - R represents scattering due to the correlation pz(lﬁ ,53) -

Pl(Bi )pl(b_é) between scatterer locations.
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Section II1.7

Coherent and Incoherent Scattering in-a Plane Wave Representation

In this section we recast the principal results IT1.6.6, HI.6.18, and I11.6.19 in a plane wave
representation. The motivation for employing plane waves for the system of N scatterers
is that the configuration dependence appears, in this representation, as a simple
multiplicative phase factor. This simplifies the averaging procedure.

The Plane Wave Basis

We will consider a cubical box V = L3, which encloses the distribution of scatterers.
Plane waves which satisfy periodic boundary conditions at the walls of the box will have

-
- 2nc .. = .
wave vectors k =—7—, with ¢ = clﬁ + 029 +03Q . 01 0p O3 all integers. We can

7

denote a complete set of orthonormal state vectors indexed by the wave vectors, using the

. . -9 .
Dirac bracket notation, as |k o> . This set of plane wave states forms a complete
orthonormal set, with the properties of completeness and orthnormality given by

g T o1.7.1
%I k c>( kgl = 1
and
(K 1 Kg)= 85y HL7.2
. q - .
If we introduce a momentum operator p = -1 V‘ , then this operator takes on wave
vector eigenvalues so that (neglecting the size parameter o for simplicity) '
5.7 n1.7.3

LoD
y=eiks Tk ),

.—) . - . .
where rjis any of the scatterer locations. We use this property to compute the matrix

-
elements of ‘i’( T ) between plane wave states. In particular, we have

ip-T ip-T 7.
fr)=e P T A0y 1P, 74

so that the matrix elements of the transition operator are
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o1.7.5

The meaning of I11.7.5 is that the matrix element of the scattering amplitude for a single

- - -3

scatterer between plane wave states | k c> and | k o') for a scatterer at T differs
e

eiko-ko) 1 Ap

-
important point here is that the random variable r; appears only in this phase factor.

from that of a scatterer at the origin only by the phase factor

Coherent and Incoherent Scattering

We will begin the development of the formalism in the plane wave basis by computing
_the expression II1.6.6 for the mean total coherent wave. This is accomplished by
computing successive terms in the series expansion of I—1t_-lT) , and performing the
infinite sum. We will assume that the scatterers are distributed completely randomly
throughout the volume V = L3 which encloses the scatterers, so that the number density
n(r}) is given by n(r)) = Np(F;) = N/V.

Specifically. equation HI.6.6 says:

mp) = (1+ T + (T 2 +.)p)

=(1- 1 ylpp.

In order to convert this to a plane wave basis, we can invoke the definition of the mean
value of the single scatterer transition operator to obtain

T =N x§ [ e

N NS COIT AN
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g —) -
U L ey B 1K eito k) (K @) 1)K

- - .= - — L7
= NE (Kol O 1K) KN (KL 17.6

= Ng T lo)(al . m1.7.7

Making use of this result, we can compute the second power of the average transition
operator:

(T 72=1 -1 =(NIT,l0){cl)x (NF Tylo')(a')

= NZG%. T Ty loY(olo')(ao'l
= Nﬁga, T, Ty 10) 854 (0'l
= X (NT,? lo)(al

The same argument can be made to show that the general term is

(T k= T @TXI0)al,

so that the full series (1- T ) is given by

(1- ¥ )! = z [1+NTg+(NT)2+..] I6)(al

= I loXal. I.7.8
c

On substituting this into I11.6.6, we obtain

m) = (1- T )lip) = Z T (oimdio) m.7.9

The coherent scattering, II1.6.19, is then given by
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I p; "I p:)*
ing){nrl = Ing) (apl= 2, 1,<-0N13ri l<<_5NTP;?

o) (o'l 17.10

(o]

We will also evaluate the incoherent scattering contribution to first order in the
generating operator L. From IIL.6.18 in the limit of small L , we have to first order

S _— a1.7.11
Inp){nr! = (1+L) Ing) {=nrl
We show in appendix A that the first order incoherent term is given by
IRT)<KT| - IKT> (TCT1=L IRT> (RT|
Toeo T* ¢ o (¢"lpy)y  (o"+o-clpy)
= (o] 1 1 J
N Fo T NTNTYy 1-NT, 1N o9 min

For evaluating the scattering cross section, we will be interested in computing the matrix
elements (—l?| l?) of the quantities IT1.7.10 and II1.7.12. This will be addressed in
section III.8, below.

To conclude the current section, we discuss the calculation of the matrix elements T, and
Toq- First we compute Tg. The definition of Tg is

Te= (K 1 T0) |i?o>’

which can be written in configuration space as

T = [ & (K P ) (F1h0) 1k,) I.7.13
‘where

oD L kg T o R Ty IM.7.14

(r'kc)‘\/—v" = (kg lr)".

. -) _’ —) . . [
The quantity (r | ‘}( 0) Ik o> is the effect of the single scatterer on a simple plane
wave, as expressed in the configuration space representation. This is therefore the same
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quantity as was evaluated as the exterior solution in equations II1.3.15 for the single
uniform sphere scatterer, and is given as

<?' q‘(6)) |i(-)°) = n§0 Cn, hn(l)(kcr) P, (cosf) . o1.7.15
On substituting I11.7.14 and I11.7.15 into IIL7.13, we get |
o -3 00
TG = ‘/'l—v J. d3r e‘lko‘ T n§) Cno hn(l)(kor) Pn(COSQ)
3 . -1 OL7.16
= 7% & o | @3 P (cosB) e i KoT €080 1 (e r)

where an arbitrary choice of the configuration space coordinate system orientation has

- - -
been made, placing the z axis parallel to k  , sothat k ;- r = kgr cos® , which

simplifies the computations.
Next, we evaluate the off diagonal terms, Tgq. Once again we start from the definition
- - =
Toe = (Kol T(0) 1Ky )

= | & (E)ol?)(?l ‘T(?) |§’°,)_ m1.7.17

-
This time we allign the z axis along k ., so that

o0

(FIR0) 1K) = I cngbaPlkor) Pylcosd).

1.7.18

. . . —.) —.) 3 . .
It is convenient to write r and k; in polar coordinates, with reference to figure 3. In
particular, we have

E)(3 (canfsian) (ka’ l(ﬂy’ koz) (pglar) (kG, a, B)
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and

—)
r

(x,y,2) e5ien) (r,9,9).

(cartesian)

%)

'~<>'

Figure 3. Coordinate System

On explicitly writing the cartesian components in terms of the radial components and the
polar and azimuthal angles, we obtain:

kg, = kg sina cosp
kgy = kg sina sinf
kg, = kgcosa

and
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r sin coso
r sinB sind
z = rcosf

so that

- -
k_-r

o T = kor [sinc sind cos(¢-P) + cosa cosB]

-_

-
= kgrcosy, where yis the angle between r and k.

Therefore we finally obtain

Tog = —= %_:o Cno | a3 P(cos8) e Lo cosy haDikgr) .

JV =0 II1.7.19

Section IT1.8
Far Field Solution and Scattering Cross Section

Far Field Soluti

The approach used in this section for characterizing the far field solution makes use of
Kirchoff's method for expressing a scalar field inside a closed volume in terms of the
value of the field and its normal derivative on the boundary surfaces of the volume. In
the current instance, we will consider the volume of interest to be the portion of space
outside of the turbulence region, and extending to infinity. For the purposes of
visualization, we might consider the volume of interest to be as shown in figure 4, taken
to the limit in which the outer box extends to infinity. We will be interested in describing
the scalar acoustic field and its normal derivative at the surface S; of the turbulence
volume, and at the surface at infinity, S,.

For the given acoustic potential P( ?,t) = el tg( T')) , Wwith ns(?)) satisfying
(V2 + kz) ns(?) = 0, the free space Green's function will satisfy
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). 11.8.1

Figure 4. Far Field Volume

Green's theorem allows the characterization of the field ns(?) in terms of a surface
integral

-

(P = @R V' G(TP) - GF, P AV n(P') ] day,  m82
where fi' is the inwardly directed normal to the surface S .

The free space Green's function is given by

G(?}"- ) = e II1.8.3

14



where R =7 - 7', andR=IRK|.

On inserting this expression into I11.8.2, we find

| . o
ny(T) = '3}1—5 P s w AV ns(?')+ik(r+k—lR-)—§— n(F')lda', T84

where S =Sy + S5, asis shown in figure 4, V is the volume enclosed by Sy and S , and
the normal #i' is directed into V from Sy and S, .

In the neighborhood of the surface S; at infinity, the scattered wave will behave as an

outgoing wave, with the implication that

_ ikr
ny(T) ~ Z—K; £(6,9)

and

1 ong(T) (ik-1)
— ar r’’?
ng(r)

so that the integral IT1.8.4 vanishes on S at least as fast as 1/r. We may therefore reduce
I11.8.4 to an integral over S; only:

ikR .
n(T) = -4—1; P s, ER— A [V ns(?')+ik(l+E1§)—§— n(r')]da'. IL8.5

The contributions to this integral are derived from the results for mr of the previous
section, coupled with the fact that g = @t - ;. o

If the observation point is far from the scattering region, then

ikr .,
GTT ) ik I.8.6
4rr

and
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Kine) I11.8.7
In addition, we have

ns(?) = _ﬁ

from which we can identify that

Ko

F(R K. ) = Zl;{ ﬁsl K T LR A (P -0 V' n(F))da

o 2 '
= Zl_ ﬁsl e K T A LR ng(T') - V' g (7)]da'. 1.8.9
L

Differential Scattering Cross Secti

The differential scattering cross section is defined by

do(K Kip.)

power scattered in direction [ [1.8.10
dQ solid angle x incident flux in direction l—(;nc ’

where we are interested in time averaged, rather than instantaneous values of flux. The
power scattered in direction k' ‘is the scalar product of the directed flux § with the
oriented area A :

P=S A O1.8.11

The time averaged directed flux for harmonic fields is given by (see Tatarski, ch 5)

(8)=2L maVn, I.8.12

where p is the density of air. We show the selected coordinate system geometry for the

scattering process in figure 5.



Figure 5. Scattering Geometry

We show a plane wave incident on the system from the bottom, with wave vector parallel
to the z axis, and an outgoing wave incident on a small area element on a spherical shell,
a distance R from the center of the scattering volume. The required factors are:

Areaclement: da = R2dQ T,

]

Power: P=S-KR2dQ ..(Kk/1)

ikr
V — E(R Kinc)

field gradient: Vr

ikr _ikr
= F(K Kipe) (k 5= - 55 ) #
eikr

ik F(K »'?inc) — ..(atlarger,suchasr~R,)
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On substituting these values into II1.8.12, we obtain the time averaged power per unit

area scattered in direction Kk

___ kR ikR
(§)=%)-Im(l=* ¢ iR F5)
T 111.8.13

2R?

Similarly we have for the incident flux

(Soe) = L Im(eKine? Ky elkine?)

Wp = [1.8.14
2

kinc

On substituting these values into IT1.8.10, we obtain

-)—g)

do(K Kinc
dQ

= F'F, [1.8.15

where F=F(K ,l?;nc) is the scattering amplitude.

The final result of the scattering cross section calculation is the relation II1.8.15

do(K Kine) _
dQ
where F = F(_k) ,l?i,,c) is the scattering amplitude. The remaining task is to substitute
the prior results derived from the self consistent field approximation, and evaluate these
results. In particular, we have for the scattering amplitude, the expression II1.8.9



F(K K ) = 41—“ b s, KT f [HE ng(T") -V n(7¥")]da',

from which we can deduce that

1 iKUK

* — e———
FF= (4m)2 Jsljslc ©

x A [HK -V n @A (iR -V In(P") da' da”

= (4;)2 ‘[S IISI e‘i?' (?_Fﬁ) ﬁl_ ['iE) _V' ] ﬁ". [iE) _VH ] Tts(—l:)' )Rs*(—r)" ) da' da"

+ A 9 A 9]

X m(r')m*(r") da'da",

I1.8.16

where we have interchanged the order of differentiation and averaging, since these refer

to different variables.

61



The averaged product of the scattered waves can be written as

n (PSP = (P (Irp)-1pi)) (Crpl-(pit) IT")

= (P Iep)(rpl T

S Inp) (! T")

S(@ g (mp! B

+ (?l 1pi ) {py ! g ) 01.8.17

From IIL7.11, we have to first order

P ey (ap IF" Y =(F 1(1+ L ) Ing) {np! ¥")

= (P 1) (mpl T+ L Inp) (gl F)

From III.7.9, we have

' 1 p=q)
<? |KT>=§1_NTG (olpp(r'lo)
and similarly,

———

_)ll

Corl 7 = (§ i (olp (P 10)”

"From II1.7.12, we have

('L Tnp) (mpl T)

Too' T g asag (0" !PD (0"+0"-0’Ip-‘ -, 2
- N3, Teress (Oop (gt o))

[v} l e cumt_c
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The quantity ( T'lo) is given by
and similarly,

The quantity (olp;) is given as
-
{olp) = Ivd3r (K lr){(rik.)
= = .
_ _1\7 jvd3r eiKg: T ikine T

_ Ll g iRy K T
_vadre (o] nc

An issue of importance is whether the incoming wave can be treated as a normal mode of
the system. This will depend somewhat on the particular situation. If the wavelength of
the incident wave is small compared to the total size of the turbulence distribution, then
the density of modes in the vicinity of the incident wavevector will be high, and
assumption that he incoming wave is a normal mode should give reasonable results. This
condition is likely to be satisfied for the application of interest, for which case we may
use the relationship

-

= 8(Kg- King ),

which significantly simplifies the analysis.

The matrix elements Ty and Ty fromIIL7.16 and II.7.19, are given as

1 -i
Tg= o n§0 Cn, [ a3 eikotcos® h,Pkgr) Py(cosh) ,

and

1 | a3 e kot cOSY p (D 1) P,(cosh) .

o0
TUG' = \j_— nEO Cno
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Section ITL.9
Relationship to Tatarski's Approach

In this section we show how Tatarski's result for the average value of the flux density
vector of the scattered energy (averaged over one period of oscillation) follows from our
more general formulation by keeping only lowest order terms in the scattering potential.
As in the first part of section III, we neglect the motion of the medium, for simplicity.
Tatarski's equations (5.5), (5.8), (5.10), and (5.13) are then

(V2+k2)nt = kz%'n
(5.5

VT.

A series solution, & =m,+m +..., is then sought where

.
(5.8) v = ALK
ikr ' A 2D A
.1 e 2t ikn- F _-ikm- T 43
(5.10) ny = i T {,21: T Ao€ e d’r
(far field)
The average scattered energy flux is given by
5.13
( ) g) = % Im(7t1*V1t1)
552 .
pck’A rz ok - ) (71 -7 g3 g3,
8n2r2
In our more abstract formalism, these same equations are written as
(5.5 dir) = ¢ In) 01.9.1
L o
58 o) 3  with (Flrg)= Agelk T
(5.10) YD = 8,0 Iny) (far field) 9.2
(513) . S" = go o- hto ) <1t° 'On T@O t [1.9.3



As is evident from equation (5.10), or equivalently relation I11.9.2, the solution for 7t is

found to first order in the perturbing potential v', and the flux vector S is therefore
obtained in the Born approximation. We will show that the relation II1.9.3 for the
average scattered energy flux follows from the results of our choice of multiple scattering
formalism in the limit of neglecting the coherent scattering entirely and keeping the
incoherent results only to lowest order. In particular, our results from section III.6 are

Imp){nr! =(1+L +L2+L3+.) Ing) (n7!

= (1-L)! Inp) (nrl, o4 -
and
mp) = (1+ T + (T +.)m)
=(1- T ), 1.9.5
where
= (1-R Y (M) (for uncorrelated scaterers)
=(1+R +R?+R3+. )M 11.9.6
and
— — 1.9.7
RX = *%tx T 1 ‘
— — 9.8
MX =N [ & pB) t@) X T1E) =NTxt,
and
T=fd=0a- %0
AN A ANA A A AMMA ANA A
= + + +..
gV +8 VeV +8V BV EY 9.9
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To get to Tatarski's first Born approximation result, we take the limit of$" going to zero,
keeping only the lowest power non vanishing terms in each expansion. In particular, this
means that we take % to be

T= 80, 111.9.10

In addition, we find I11.9.5 is replaced by

Inr) = Ipy),
so that
—_— 1.9.11
Ing) {nrl = Ip;) (p;l .
We may now evaluate
lnr){rpt = (1-L)Yinp) (rpl= (14L) Inp) (npl,
where we must now consider L to be given by L =M , where
MX = ¥ X ¢Tht
If we use the result II1.9.11, we find
o1.9.12

Iep)(npl = Ip)(pil + 29 Ipp) (il 0741 .

If we now consider the scattered component only, we find to this order of approximation,

Im)(msl = Inp)(mpl - Inp) (il - Ip;) (mpl + Ip;) (pil

o tat II.9.13

= ¥ Ip)(pl VTR,

which is in agreement with Tatarski's result.
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Sction III.10
Numerical Algorithm

The numerical algorithm which is presented in this section is a fully operational code for
obtaining the differential scattering cross section in the mean self consistent field
approximation for a collection of randomly positioned eddies confined to a cubical
turbulence volume. The code follows the theoretical treatment developed in sections
I11.1.3 through II1.1.8 of this document. Both the computation of the coherent field and
the incoherent field have been coded. The incoherent field portion would lend itself quite
well to operation as a vectorized code. It does, however, involve an extra three
dimensional momentum space integration, and operates very slowly on the pc computer
which has been used for code development . For this reason, the incoherent field portion
of the algorithm has been commented out in the phase I algorithm. This is clearly marked
by the use of a "c*" notation in the first column of the listing. It could easily be reinstated
for evaluation on a vector processor, if desired.

The treatment in the numerical algorithm makes use of a code segment obtained from a
text by Barber and Hill, for computation of the Bessel function expansions identified in
the T-matrix plane wave representation portion of part III of this report. It does, however,
diverge from the coordinate system choice identified in section ITL7 of the theory. This is
because an election was made to treat a definite cubical turbulence volume, for which
case there is a preferred orientation of the spacial coordinates along the axes of the cube,
rather than choosing the z axis aligned to the k-space wave vector. The angle between
the space vector and the wave vector is still computed, and the result is used in the
spherical expansion of the single particle solution. The only signigicant consequence of
the coordinate system orientation choice is that the volume integrals are carried out in
cartesian, rather than polar, coordinates.

The selection of a cube for the shape of the turbulence volume is arbitrary, but does lend
itself to computational simplicity. There is, at this stage of code development, no
specified a priori shape to associate with the physical turbulence volume. Shapes of a
rectangular prism character, but with non cubical aspect ratio could be computed with
negligible perturbation to the algorithm as it stands; many of the required code lines for
this modification have already been inserted, but variables in these lines have been set to
default cubical values.

The treatment of an arbitrarily shaped turbulence volume lies outside the scope of phase I
development, but should be relatively straightforward to accomplish under a phase II. In
particular, a natural way to approach the task would be to approximate the volume witha
collection of rectangular prisms, joined at the boundaries by transport boundary
conditions. This would allow preservation of the main features of the phase I code. The
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process of joining adjacent prisms would be very similar in character to the processes
used in finite element computational fluid dynamics algorithms.

Some compromises have been made in the development of the phase I algorithm, in the
interest of both schedule and run time. In particular, the code as presented treats only a
single turbule size. The treatment of a collection of sizes is a straight forward
modification in the T-matrix calculkations, in which the averaging of the collection of
waves to obtain a2 mean wave would yield not a simple multiplication factor of N, but
rather a sum over sizes of the product of N for each size with the quantity being averaged.
The resulting T matrices would have additional indices for the turbule size. An algorithm
for the computation of the number densities for each size, within the confines of a
particular turbulence model, has been presented in Part II of this report, but has not yet
been integrated into the scattering algorithm. We have also developed a code module for
inverting the matrix which results from the part II algorithm when a large number of size
bins have been selected. This code is also operational, but has not yet been fully tested,
and is not presented in this phase I report. It is suggested that the phase II code
development should include as a first step the integration of these two codes with the
body of the algorithm, and the development of the T-matrices when there is more than
one size.

Use of Algorithm for Shadow Zone Analysis

Several options present themselves for the intended use of this code in shadow zone
analysis. One of these options is to use the algorithm as is, but embed it in a larger code
which has been designed to simulate the shadow zone environment. Some characteristics
of the code should be identified in the assessment of the viability of this option. First, the
election to use a cubical turbulence volume will lead to volume boundary artifacts when
the scatterer density is high, because the planar surfaces will behave as mirrors. This is
probably not a significant issue'at low eddy density, because in that case, the acoustic
wave would penetrate well into the volume, and the scattered wave would be principally
influenced by volumetric, rather than surface effects. Another consideration is that a far
field approximation has been used. This will be highly appropriate when the turbulence
volume is small and reasonably distant. If the smallness condition is not satisfied, but
the turbulence volume is still reasoonably distant, it may be approprate to subdivide the
volume into smaller regions, and compute the contribution from each within the far field
approximation. This procedure will be invalid for wavelengths which are comparable to
the size of the total turbulence volume, but such wavelengths are not likely to
characterize the acoustic spectrum of interest , since this lies in the midrange audio

spectrum.

A second option in the use of the code in shadow zone analysis would be to conduct the
additional development required to handle the near field. This would allow
characterization of scatter from turbule distributions with a large angular subtense.
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Additional theoretical development would be required before a code module of this
character could be written.

Some consideration should be given as to how to interface the current module with a
system level environmental description model. One method for treating the system level
model would be essentially a finite element fluid model with acoustic transport. If this
style of code is envisioned, the use of the current module would be straightforward in that
one or more of the finite elements would simply be replaccd by the current algorithm in
so far as that elements acoustic properties are concerned. If the system level algorithm is
to be a more simplified description, such a s a linear circuit model, some thought would
need to be applied as to how to represent this current algorithm as an equivalent circuit

element.

Finally, if the goal is to obtain as literal as possible an environmental description, it
would be desirable to extend the current algorithm to arbitrary shapes of the total
turbulence volume. This would involve analysis of interface acoustic transport equations,
and the encoding of these equations between rectangular elements. A Finite Volume
Elements approach would lend itself well to this task. As an alternative, it might be
desired to approximate the actual physical turbulence volume by some relatively simple
three dimensional shape of high symmetry, such as a truncated cylinder, an oblate
spheroid, etc. In this latter case, some additional development work would be required to

recast the integrals into the selected geometry.
Phase I algorithm

The text of the phase I algorithm is presented below.

program acstc
complex hankel(200), hpnme(200) Xi,

+ b(200),c(200),e(200),£(200), cn0(200) dum
common /avkncom/ N, Tix,Tiy,den
common /tcom/ cl,nmax,pijmax,cnO
dimension xk(3),xki(3),a(200),d(200)
c* dimension xksg(3),isg(3)
¢ N is the number of eddies in the volume
¢ Tix,Tiy are the real and imaginary parts of the T matrix
¢ den is an intermediate expression used in evaluating T
¢ el is the side length of the (assumed cubical) turbulence volume
¢ nmax is the highest order to use in spherical expansions
c jmax is the number of cells per side, when dividing up the
¢ volume for doing volume integrals.
pi = 3.141592653
c hankel(n) is a complex array for storing hankel functions
c
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C

O

[elN ¢}

OOO0O0

o

(2]

OO0

OO0 000 0000

OO0

(¢]

open input data file
open(1,file="acstc.inp’)
read(1,*) maxsg,el,(xk(i),i=1,3),(xki(j),j=1,3),N,jmax,nmax

open output file
open(7,file="acstc.out’)

specify the range of allowed values of sigma to compute
maxsgl = maxsg
maxsg2 = maxsg
maxsg3 = maxsg

evaluate the coefficients to be used in spherical expansions

...first some assumptions, to use as a definite example...

xa =10.
xa is the radius of turbule (cm)

xkimag=sqrt(xki(1)*xki(1)+xki(2)*xki(2)+xki(3)*xki(3))
xkimag is the scalar magnitude of the incident wave vector

rho = .0018
rho is the density of air (g/cm”3) outside eddy

rhoprm = rho*1.0001
rhoprm is the density inside the eddy
(assume a small (0.01 percent) density fluctuation)

xkprm = 1.0002*xkimag
xkprm is the magnitude of the wave vector inside the turbule
(assume a small (0.02 percent) refractive index fluctuation)

note: variations in rho and n may or may not be related,
depending on temperature, speed, moisture, etc considerations

The coefficients cn0 can be found by solving the relations
a*an0 - b*cn0=c¢

and d*an0 - e*cn0 =f

with the coefficients a through f given below

xi =(0.,1.)
xi is the imaginary number square root of -1.

evaluate the required (exterior) bessel functions at the boundary
write(6,*) ' start 1st besh call'
write(7,*) ' start 1st besh call'
call besh(xkimag*xa,hankel,nmax+1)

evaluate the required derivatives of bessel functions at boundary
write (6,%) ' return from besh... start derivatives'
write (7,*) ' return from besh... start derivatives'
hprime(1) = - hankel(2)
do 40 i=2,nmax+1
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40  hprime(i) = hankel(i-1) - (i+1)*hankel(i)/xkimag/xa

c

¢ write the exterior coefficients in terms of bessels and derivatives
write(6,*) ' done with derivatives, start exterior coefficients'
write(7,*) ' done with derivatives, start exterior coefficients'
do 50 i=1,nmax
ip=i+l ,
b(i) = rho*hankel(ip) -
c(i) = rho*(1.+2.*i)*xi**i*real (hankel(ip)) -
e(i) = xkimag*hprime(ip)

50 (i) = xkimag*(1.+2.*i)*xi**i*real(hprime(ip))

c

¢ evaluate the required (interior) bessel functions at boundary
write(6,*) ' done with exterior...do interior besh call’
write(7,*) ' done with exterior...do interior besh call'
call besh(xkprm*xa,hankel,nmax+1)

c

¢ evaluate the required derivatives of bessel functions at boundary
write(6,%) ' done with besh, interior start derivatives'
write(7,*) ' done with besh, interior start derivatives’
hprime(1) = - hankel(2)
do 60 i=2,nmax+1

60  hprime(i) = hankel(i-1) - (i+1)*hankel(i)/xkprm/xa

c

¢ write the interior coefficients in terms of bessels and derivatives
write(6,¥) ' evaluate interior coefficients and solve for cn0'
write(7,¥) ' evaluate interior coefficients and solve for cn0'
do 70 i=1,nmax
ip=1i+1
a(i) = rhoprm*real(hankel(ip))
d(i) = xkprm*real(hprime(ip))

c

¢ solve for the cn0
dum = b()*d(i)-e(i)*a(i)
if(dum.eq.(0.,0.))go to 99
70  cn0G)=(f()*a(i)-c(i)*d(i))/dum
c

¢ compute first term of dsigma/domega
. write(6,*) ' done with cn0... start dsigma/domega #1'
write(6,*) 'cn0 =',(cn0(),i=1,nmax)
write(7,¥) 'cn0 =',(cn0(1),i=1,nmax)
write(7,*) ' done with cn0... start dsigma/domega #1'
fil = el*el*el*avkna(xki)*fi(xk,xki)/16./pi/pi
write(6,*) 'fil='fil
write(7,*) 'fil='fil
c
cc* compute second term of dsigma/domega
cc* sum fi2 over ksigma for allowed values of sigma
c* write(6,*) ' now do dsigma/domega #2'
c* write(7,*) ' now do dsigma/domega #2'
fi2=0.
c* do 300 i1 =-maxsgl, maxsgl
c* isg(1) =il
c* do 200 i2 = -maxsg2, maxsg2




c* isg(2) =i2

c* do 100 i3 = -maxsg3, maxsg3

c* isg(3) =13

cc* compute ksigma

c* do 400 i=1,3

c*400 xksg(i) = 2*pi*isg(i)/el

c* fi2 = fi2+el*el*el*avkns(xksg,xki)*fi(xk,xksg)/16/pi/pi

c* write(6,*) ' done with avkns for ksigma =',xksg

c* write(7,*) ' done with avkns for ksigma =',xksg

¢*100 continue

c*200 continue

c*300 continue

C

¢ combine first and second term of dsigma/domega

c*  write(6,*) ' add fil and fi2 to get total dsigma/domega

c*  write(7,*) ' add fil and fi2 to get total dsigma/domega’
fstrf = fil + fi2 .
write(6,*) 'fstrf = ' fstf
write(7,*) 'fstrf = " fstf

]

c
c all done,
stop
99  write(6,*) ' boundary matrix is singular’
stop
end
c —-——

function fi(xk1,xk2)
dimension xk1(3),xk2(3),smallq(3),bigQ(3)
write(6,*) ' enter function fi'

xf=1.
qdotQ =0.
do 100 i=1,3

smallq(i) = xk1(i) - xk2(i)
bigQ = xk1(i) + xk2(i)
qdotQ = qdotQ + smallq(i) * bigQ()
xf = xf*xg(smallq(i))
100 continue
fi = qdotQ*qdotQ*xf
write(6,*) ' done with function fi'
return
end

function xg(x)
write(6,*) ' start function xg'
if(x.1e.0.001)go to 10
xg = sin(x)/x*sin(x)/x
write(6,*) ' done with xg'
return

10 xg=(1.-x*x/6.)*(1.-x*x/6.)
write(6,*) ' done with xg'
return
end

function avkna(xki)
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common /avkncom/ N, Tix, Tiy,den
dimension xki(3)
write(6,*) ' start function avkna',’ xki=',xki
call T(xki,Tix,Tiy) . .
den = (1.- N*Tix)*(1.- N*Tix) + N*N*Tiy*Tiy
avkna = N*¥*N*(Tix*Tix + Tiy*Tiy)/den
write(6,¥) ' done with avkna'
return
end
c === ;
function avkns(xksg,xki)
common /avkncom/ N, Tix, Tiy,den
dimension xksg(3),xki(3)
write(6,*) ' start function avkns'
write(6,¥) ' xki = 'xki
write(7,¥) ' xki = ",xki
call T(xksg,Tsgx,Tsgy)
write(7,%) ' Tsgx =, Tsgx, Tsgy =", Tsgy
den2 = 1.- N*N*(Tsgx*Tsgx + Tsgy*Tsgy)
call T2(xksg,xki,T2sgx,T2sgy)
avkns = N*(T2sgx*T2sgx + T2sgy*T2sgy)/den2/den
write(6,*) ' done with avkns'
return
end

subroutine T(xk,Tx,Ty)
common /Tcomy/ el,nmax,pi,jmax,cn0
complex sphsum,hn(200),Texp,TT,cn0(200)
dimension xk(3),pn(200)
¢ xk is the wavevector
c Txis the real part of TT
¢ Ty is the imaginary part of TT
c el is the side length of the cubical turbulence volume
¢ nmax is the cut off for the summation of spherical functions
¢ jmax is the # of cells into which each side of the cube is divided
write(6,*) ' enter subroutine T',' xk='",xk
write(6,¥) ' establish limits of r integration’
nxmax = jmax
nymax = jmax
nzmax = jmax
write(6,*) ' set d-cubed r'
deltex = el/nxmax
deltay = el/nymax
deltaz = el/nzmax
write(6,¥) ' set starting r'
x0 = (nxmax + 1)*deltax/2.
y0 = (nymax + 1)*deltay/2.
z0 = (nzmax + 1)*deltaz/2.
write(6,¥) ' find magnitude of k vector’
xkmag = sqrt(xk(1)*xk(1) + xk(2)*xk(2) + xk(3)*xk(3))
TT =(0.,0.) '
write(6,*) 'start r integration'
do 400 iz=1,nzmax
z =iz*deltaz - z0
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72 = 2%z
write(6,*) ' z=',z,' 22=",22
do 300 iy=1,nymax '
y = iy*deltay - y0
y2=y*y
write(6,*) ' y=y,' y2="y2 )
do 200 ix=1,nxmax .
x = ix*deltax - x0
X2 = x*x
write(6,*) ' x=",x,' x2=",x2
r =sqrt(x2 + y2 + z22)
write(6,*) 'r="r
rdotk = (x*xk(1) + y*xk(2) + z*xk(3))
write(6,*) ' rdotk=",rdotk
rk = r*xkmag
write(6,*) ' rk=",rk
cosang = rdotk/rk
write(6,*) ' cosang=',cosang
¢ cosang is the cosine of the angle between r and k vectors
sphsum = (0.,0.)
write(6,*) ' doing r',ix,iy,iz
write(6,*) ' start subroutine p'
call p(cosang,pn,nmax)
write(6,*) ' done with subroutine p, enter subroutine besh'
call besh(rk,hn,nmax+1)
write(6,*) ' done with besh... start sphsum integral'
do 100 n=1,nmax
100 sphsum = sphsum + cnO(n)*hn(n+1)*pn(n)
Texp = cmplx(cos(rdotk),-sin(rdotk))
200 TT =TT + Texp*sphsum*deltax*deltay*deltaz
300 continue
400 continue
TT = TT/el**1.5
Tx =real(TT)
Ty = aimag(TT)
write(6,*) ' done with subroutine T'
return
end

subroutine T2(xk1,xk2,Tx,Ty)
common /Tcom/ el,nmax,pi,jmax,cn0
dimension xk1(3),xk2(3),pn(200)
complex sphsum,hn(200),Texp,T,cn0(200)
.c xk1 is the "outgoing" wavevector
¢ xk2 is the "incoming" wavevector
¢ Tx s the real part of T2
¢ Ty is the imaginary part of T2
c el is the side length of the cubical turbulence volume
¢ nmax is the cut off for the summation of spherical functions
¢ jmax is the # of cells into which each side of the cube is divided
nxmax = jmax
nymax = jmax
nzmax = jmax
deltax = el/nxmax
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deltay = el/nymax
deltaz = el/nzmax
x0 = (nxmax + 1)*deltax/2.
y0 = (nymax + 1)*deltay/2.
z0 = (nzmax + 1)*deltaz/2.

xk1mag=sqrt(xk1(1)*xk1(1)+xk1(2)*xk1(2)+xk1(3)*xk1(3))
xk2mag=sqrt(xk2(1)*xk2(1)+xk2(2)*xk2(2)+xk2(3)*xk2(3))

T=(0.0.)

do 400 iz=1,nzmax

z =iz*deltaz - 20

2 =z%z

do 300 iy=1,nymax

y = iy*deltay - y0

y2=y*y

do 200 ix=1,nxmax

x = ix*deltax - x0

X2 = x*x

r =sqrt(x2 + y2 + 22)

rdotkl = (x*xk1(1) + y*xk1(2) + z*xk1(3))
rdotk2 = (x*xk2(1) + y*xk2(2) + z*xk2(3))
rk1 =r*xklmag

k2 = r*xk2mag

cosgam = rdotk1/rk1

costht = rdotk2/rk2

¢ costht is the cosine of the angle between r and k2 vectors
¢ cosgam is the cosine of the angle between r and k1 vectors

sphsum = (0.,0.)

call p(costht,pn,nmax)

call besh(rk2,hn,nmax+1)

do 100 n=1,nmax
100  sphsum = sphsum + cnO(n)*hn(n+1)*pn(n)

Texp = cmplx(cos(rdotk1),-sin(rdotk1))
200 T =Texp*sphsum*deltax*deltay*deltaz
300 continue
400 continue

T =T/el**1.5

Tx = real(T)

Ty = aimag(T)

returmn

end

Subroutine besh(x,hankel,nc)
This subroutine taken from Barber and Hill, 'Light
Scattering by Particles: Computational Methods,'
World Scientific, vol2, 1990

calculates hankel function
bj = bessel function of first kind
by = bessel function of second kind
=real argument
nc = order of functions... starts at zero... ie:

e el e eNeeNeNeNeI e N e}

complex hankel(nc)
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dimension bj(201),by(201),t(3)

by(*) calculation... obtain Oth & 1st order functions
a = sin(x)/x
by(1) = -cos(x)/x
by(2) =by(1)/x - a

obtain the higher order functions by upward recursion
don=3nc
m = real(n-2)
by(n) = (2.*m+1.)*by(n-1)/x-by(n-2)
end do

bj(*) calculation... set the starting order for downward recursion

nst = int(x+4.05*x**.3333+2.+(101.+x)**.5)
the t(*) array is used to recur down to the two highest order functions
that are needed.

set starting values for the two highest orders nst and nst-1
t(3)=0.
t(2)=1.e-35

recur downward to obtain orders nc-1 and nc-2
doi=nst-1,nc-1,-1
ri = real(i)
t(1) = 2. *ri+1.)*t(2)/x-t(3)
t(3) =t(2)
t(2) =t(1)
end do

continue downward recursion to order one
bj(nc) =1(3)
bj(nc-1) =t(2)
doi=nc-2,1,-1
ri = real(i)
bj(i) = (2.*ri+1.)*bj(i+1)/x-bj(i+2)
end do

calculate the scale factor and the functions
alpha = a/bj(1)
dok=1,nc
hankel(k) = cmplx(bj(k)*alpha,by(k))
end do
return
end

subroutine p(x,pn,nmax)
dimension pn(200)
pn(l) =x

pn(2) = 0.5*(3.*x*x-1.)
do 10 i=3,nmax

10  pn@i) = ((2.*-1.)*x*pn(i-1) - (-1)*pn(i-2))/i

return
end
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Appendix A
First Order Incoherent Effects

We have shown in section IIL6 that the incoherent radiation component is given by

Inp) {npl = (1-Ly! 77;)‘ _(;1-4—,

-

with
L =(1-RY!M +Q -R),

where M represents the contribution due to individual scatterers and Q - R represents
the contribution due to twe particle correlation effects among pairs of scatterers. Within
the context of our phase I assumptions, correlation effects have been deferred to the

future, so that we have

L =(1-RY'M . Al

The superoperators R andM are defined for any configuration independent operator X as

- - A2
Rx=% x*%
and
M x=Efep) tHxt ). A3
J
The averaged operator b is given in relation I11.6.5 as
t = 3:Id3r,-p< i) Yo,
and has the plane wave expansion I11.7.6
T =N§To lo) (ol . Ad

The expression (1 -R )’l M can be expressed in the plane wave basis by expanding
the operator in a series, and evaluating the separate terms of the series. The result is the

7




combined with the plane wave expansion of M . The first term in the series is X itself,
which can be represented in the plane wave basis as

1X1=Z X lo){a1 Xl ){c| = 2 X Xog l0) (01
4 oo c o0

The second term in the series is R X, which can bé expressed in the plane save basis as

RX=1T x%'= 2 Z(NTo) lo) (01X 10"} (o (NT¢™)

= I Z(NTo) (NTg™*) Xgo' 16) {01 . AS

The third term in the series is

R2X =R (R X). A6

= %: T (NTg) lo){ol (R X) o'} (o | (NTg™) (...from A.5)
(o]

3 ZONTo) lo) (o1 & % (NTo) (NTo~") Xgrgr 167 (0™ 1 0') (0" (NT "
=§ g;oz,, ? (NTG)(NTG )(NTU) (NTc )Xo'o" |0><010'"><0m|°’ >(G| AT

= E? T (NTg) (NTg*) (NT) (NTg™) Xgrg* 16) 8gg” S { 0

c'

= I T(NT,?2 (NTg*)2 Xqq 10)(a'I. A8
(o B0 }

By induction, then, T

R™X =R (R ™X)

= X E(NTO) lo) (o1 (R ™1X)Ic')(c'| NTq™")
o]

Z 2 (NTo)™ NTg )" X' 10)( 1. A9

On combining the terms in the sum we get
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(1-R)'X = 55[1 + (NTQ(NTg*) + (NTG)2NT5")? + ...
+ (NT)m(NTg ™)™ +. ] Xoe 10) (0’

=33 1
¢ )

X ol ',
Z TNTynT oo lote

A.10

Inordertoget L X =(1 -R yIM X, we need next to compute M X in the plane
wave basis:

M X = 2]dnp(i) P x ()
J
- N olag o xi ot All
The integrand of this expression is
i x1 o=

=ZZZZlop{o ! N(r) lop (o1 X 1o3){ a3l ’TT(q’-)lc4><c4|. AL

0’1 02 03 04

e I T e = =
-i -Kg, ) T; * -1 kg, - Kg, ) T;
) c% éé él ope (kol % ) . dez X0203T 0403 © 9 707 oyl A.13

l_() + -k-) E) ) ?‘ *
The T Res TR0 T U Ty, T EHICA
G} O3 03 O4 0102 © G403 Xczds 12{04 Ald

so that the integral becomes

M X = Z[d%p() X () =
J

N (K, - Koy, + Ky, - Ky, ) T
Njgz s 55 et Kor-koythos Koyl gy 1% o Xop0, 1 01X04]

G; 6, G5 04
= NI I X Tg,6, T o4(0p+0401) Xos(ozs0s-01) | G1X04 | A.16
0,0, 04
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To continue the derivation of L X =(1 -R ! M X, we substitute X » M Xin
relation A.10. To accomplish this, we need to evaluate the matrix elements of M X
which we derive from relation A.16:

( clM XlId ) = chl O%O%Tolcz T*O4(0’2+G4-0'1)X02(.0’2+04-0’])( ol Glx0'4 lo' )

=N E Tso, T*o'(ozm'-o) X5,(02+6-0) A.17
2

We next substitute this value into A.10, obtaining

LX‘=(1-R)‘1M X =XX 1 M X)gg l0) (0l

6o 1- (NTG)(NT4™)

602 T*o'(cz+c'-c) Xoyoyta-c) 102(0'l

5%%> 1
g0 C

> 1- (NT)(NTo™) A.18

We are intersted in evaluating A.18 when the quantity X is chosen to be Inp) (=nrl.
The plane wave representation of this quantity is given in II1.7.10. In particular, we have

— T oyl p; o" Ip;)*
Inp) (ntl =oZ,:o" 1(-114'113;)1 EN}I)'i loy Y(o"l

The required matrix elements are found to be

(0p Inr) (mp | opba-0)= X (cylp) (o' 1pp*

o, | "l Gy+0'-

(o) p)  (op+c™-olp)*

- l - NTGZ l - NT*(GZ‘!‘G"C) A.19
On substituting these values into A.18, we obtain
1 * (o)l py  (op+c’-ol pp*
)IDN T & o) TN Il oXo'l,
590, 1 NTYINTg) 02 T 1-NTg, 1-NT (g100) A20

Which is the result we were looking for.
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